Stochastic comparisons of stratified sampling techniques for some Monte Carlo estimators

نویسندگان

  • Larry Goldstein
  • Yosef Rinott
  • Marco Scarsini
چکیده

We compare estimators of the (essential) supremum and the integral of a function f defined on a measurable space when f may be observed at a sample of points in its domain, possibly with error. The estimators compared vary in their levels of stratification of the domain, with the result that more refined stratification is better with respect to different criteria. The emphasis is on criteria related to stochastic orders. For example, rather than compare estimators of the integral of f by their variances (for unbiased estimators), or mean square error, we attempt the stronger comparison of convex order when possible. For the supremum the criterion is based on the stochastic order of estimators. For some of the results no regularity assumptions for f are needed, while for others we assume that f is monotone on an appropriate domain. AMS 2000 Subject Classification: Primary 65C05. Secondary 60E15, 62D05.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation Efficiency and an Introduction to Variance Reduction Methods

In these notes we discuss the efficiency of a Monte-Carlo estimator. This naturally leads to the search for more efficient estimators and towards this end we describe some simple variance reduction techniques. In particular, we describe common random numbers, control variates, antithetic Variates and conditional Monte-Carlo, all of which are designed to reduce the variance of our Monte-Carlo es...

متن کامل

Error analysis of estimators that use combinations of stochastic sampling strategies for direct illumination

We present a theoretical analysis of error of combinations of Monte Carlo estimators used in image synthesis. Importance sampling and multiple importance sampling are popular variance-reduction strategies. Unfortunately, neither strategy improves the rate of convergence of Monte Carlo integration. Jittered sampling (a type of stratified sampling), on the other hand is known to improve the conve...

متن کامل

Quasi-monte Carlo Strategies for Stochastic Optimization

In this paper we discuss the issue of solving stochastic optimization problems using sampling methods. Numerical results have shown that using variance reduction techniques from statistics can result in significant improvements over Monte Carlo sampling in terms of the number of samples needed for convergence of the optimal objective value and optimal solution to a stochastic optimization probl...

متن کامل

On Rates of Convergence for Stochastic Optimization Problems Under Non--Independent and Identically Distributed Sampling

In this paper we discuss the issue of solving stochastic optimization problems by means of sample average approximations. Our focus is on rates of convergence of estimators of optimal solutions and optimal values with respect to the sample size. This is a well-studied problem in case the samples are independent and identically distributed (i.e., when standard Monte Carlo simulation is used); he...

متن کامل

Variance - Reduction Techniques for Estimating Quantiles and Value - at - Risk

VARIANCE-REDUCTION TECHNIQUES FOR ESTIMATING QUANTILES AND VALUE-AT-RISK by Fang Chu Quantiles, as a performance measure, arise in many practical contexts. In finance, quantiles are called values-at-risk (VARs), and they are widely used in the financial industry to measure portfolio risk. When the cumulative distribution function is unknown, the quantile can not be computed exactly and must be ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009